1. How to prepare your abstract

Abstracts must have a total length not exceeding 3000 characters (approximately 400 words), excluding the title and the names of the investigators. The sections of the abstract are detailed below. Please bear in mind that they change according to the type of abstract (research study versus case(s) report).

Abstract of a research study. These are studies that used scientific methods to answer a research question or to test a research hypothesis posed in advance. The structured abstract of a research study must have the following sections:

- **Introduction and Objective.** Provide the context or background for the study and the study's purpose or question.
- **Methods.** Describe the study procedures (study design, selection of study participants, settings, main variables and measurements, analytical methods).
- **Results.** Describe the main findings giving specific effect sizes and their statistical (confidence intervals, p-values) and clinical significance, if possible.
- **Conclusions-Implications.** Provide only conclusions of the study directly supported by the results, along with practical implications.

An example is presented at the end.

Abstract of a case(s) report. Case(s) reports provide information about the features, care or clinical course of one or more patients affected by a condition. The structured abstract must have the following sections:

- **Introduction and Objective.** Provide the context or background for the case and the purpose of the report.
- **Case presentation.** Describe the case in chronological order (history, physical examination, investigative studies, patient’s progress and outcome) and in enough detail. Refrain from providing confusing and superfluous data.
- **Conclusions-Implications.** Compare and contrast the case with the published literature. Provide only conclusions of the case directly supported by the description, along with practical implications. Describe how the information learned applies to clinical practice and list opportunities for research.

An example is presented at the end.
2. How to submit your abstract

Abstracts are to be submitted using the Qualtrics tool available through the following link: https://fiu.qualtrics.com/jfe/form/SV_cArdWmXwK9zSKtD

If you have questions please contact comres@fiu.edu

Example of the abstract of a research study:

Introduction and Objective: Hispanics have the second highest incidence of acute myocardial infarction (AMI) in the US. There is evidence that high troponin levels are associated with longer hospital stays and a higher 30-day mortality rate in patients presenting with acute coronary syndrome. The objective of this study is to determine whether peak troponin levels are associated with in-hospital mortality in Puerto Rican patients hospitalized with AMI.

Methods: This is a non-concurrent prospective study conducted through the secondary analysis of the Puerto Rico Cardiovascular Disease Surveillance database. The sample of this study consists of 2,962 patients hospitalized with an AMI in 21 Puerto Rican medical centers during 2007, 2009, and 2011. The main independent variable was peak troponin I (cTnI) levels within 24 hours of symptom onset, and the dependent variable was in-hospital mortality. cTnI levels were dichotomized as normal or abnormal according to the values set by each of the participating hospital laboratories analyzing the blood sample. A descriptive analysis determined whether the two exposure groups were similar with respect to potential confounders (age, gender, time since symptom onset, recent surgery, hypertension, hyperlipidemia, diabetes mellitus, in-hospital complications, and smoking). A bivariate analysis of troponin levels and the above-mentioned potential confounders with in-hospital mortality was also conducted. Multivariable analysis was conducted to determine the association of peak troponin levels and the above confounders with in-hospital mortality, measured using adjusted and unadjusted odds ratios.

Results: Patients with abnormal peak troponin levels were twice as likely to die in the hospital, even after adjusting for age, gender, hypertension, and the presence of in-hospital complications (atrial fibrillation, ventricular tachycardia, ventricular fibrillation, shock and/or cardiac arrest) (OR 2.1; 95% CI= 1.3-3.3). Adjusted analysis further showed that age and in-hospital complications were significantly associated with in-hospital mortality (OR 1.1, 95% CI= 1.1-2.8; OR 4.8, 95% CI= 3.2-7.0, respectively). Hypertension was protective, resulting in a 56% decrease in odds of death (OR 0.4; 95% CI 0.3-0.6). The odds of in-hospital mortality were similar between men and women.

Conclusions-Implications: Puerto Rican patients with incident AMI and abnormal peak troponin levels have twice the odds of experiencing in-hospital death. Such patients may benefit from more timely diagnosis, aggressive monitoring and management at the time of admission. The apparent protective effect of hypertension may be explained by hypertensive patients being treated with beta-blockers prior to their MI. Further research is needed to reproduce these results in different populations.

Example of the abstract of a case report:

Introduction and Objective: The differential diagnosis of a liver mass includes metastatic disease, hepatocellular carcinoma, lymphoma, granulomatous lesions and others. Patients with inflammatory myofibroblastic tumors may also present with a liver mass. Herein, with present the case of a patient whose liver mass was initially thought to represent a malignant tumor. The objective of this case report is to highlight the importance of performing a biopsy to establish the correct diagnosis of inflammatory myofibroblastic tumor.

Case Presentation: The patient is a 77 year-old man with a history daily alcohol intake who went to see his primary care physician with a chief complaint of weight loss. An MRI revealed a heterogeneous mass in the right lobe of the liver, measuring 8 cm. in maximum dimension with enhancement along the periphery. The pancreas was atrophic with fatty replacement. Laboratory studies showed a mildly elevated bilirubin of 1.3 (0.0-1.2 mg/dL), a serum
alkaline phosphatase of 227 (39-117 IU/L), an AST of 134 (0-40 IU/L), and an ALT of 91 (0-44 IU/L). A hepatitis panel was negative for Hep A Ab, HBsAg, Hep B Core Ab, and Hep C virus Ab. A PSA was 0.2 (0.0-4.0 ng/mL). A CA 19-9 was elevated at 116 (0-35 U/mL). Smooth muscle antibody was weakly positive at 24. An antinuclear antibody was positive. A liver biopsy revealed fibrosis with a dense infiltrate of plasma cells and scattered eosinophils. Also present were spindle cells arranged in a storiform pattern. An immunohistochemistry stains for SMA was positive, one for Desmin was focally positive. Stains for ALK and IgG4 were negative. A diagnosis of inflammatory myofibroblastic tumor (IMT) was made.

Conclusions-Implications: The etiology of IMTs is unknown and may include infectious agents and autoimmune disease. It is important to differentiate IMT from hepatic lesions such as metastatic disease, hepatocellular carcinoma, lymphoma, granulomatous lesions and others. A biopsy is required to reach the correct diagnosis.